The demand growth for GFLOPS has always out-paced improvements in energy efficiency; the trend is getting progressively worse!

The future of embedded computing is "hybrid" computing where each device type is used for the task that it performs most efficiently.

A Sensible Shared Memory Model

- No HW Cache:
 - Very energy inefficient
 - Hard to design cache hit rate, simply.
 - Non-determinism
 - Costs in the way

- No virtual memory:
 - Allow all programs access to whole space
 - Unrestricted sharing of data
 - 5 GB/sec Off-chip Bandwidth
 - 512 GB/sec On-chip Bandwidth
 - Speed, speed, speed: have paradigm in true binary computing
 - Pass data between cores without stalling
 - 1000x more energy efficient than interchip communication

No need to learn new architecture, just call API function from host

A Technology Comparison

As process technology scales beyond 28nm, standby leakage will become a show stopper and the most area efficient architecture will be the one surviving.

Usage Model

- ANSI-C Programmable
 - Run your existing floating point programs out of the box!
 - No special program constructs needed!
 - Native single cycle throughput floating point instruction support!

- General Purpose Programmable
 - Parallelization at math kernel level, not at instruction level
 - No SIMD or VLX vectors
 - Shared memory architecture
 - Accelerator Model
 - Can be used as a BLAS/DSP binary accelerator
 - No need to learn new architecture, just call API function from host

Architecture Prototype & Silicon Results

Availability:
- Silicon in lab confirms wafer advantage
- Currently sampling chips to lead customers

Contact information

Email: info@adapteva.com
Address: Adapteva Inc.,
1666 Massachusetts Ave, Suite 14
Lexington MA 02420
Phone: +1 (781) 325-6688
Web: http://www.adapteva.com